IBM is developing a cognitive computing program under a DARPA program and just hit a major high.
Neurosynaptic Cores
This network of neurosynaptic cores is derived from wiring in the
monkey brain. The cores are clustered into regions, also inspired by the
brain, and each core is represented by a point along the ring. Arcs
connect the different cores to each other. Each core contains 256
neurons, 1024 axons, and 256×1024 synapses.
IBM
The Sequoia supercomputer at Lawrence Livermore National Laboratory,
recently crowned world champion of supercomputers, just simulated 10
billion neurons and 100 trillion connections among them--the most powerful brain simulation ever.
IBM and LLNL built an unprecedented 2.084 billion neurosynaptic cores,
which are an IBM-designed computer architecture that is designed to work
like a brain.
IBM was careful to say it didn’t build a realistic simulated complete
brain-- “Rather, we have simulated a novel modular, scalable,
non-von-Neumann, ultra-low power, cognitive computing architecture,” IBM
researchers say in an abstract
(PDF) of their new paper. It meets DARPA’s metric of 100 trillion
synapses, which is based on the number of synapses in the human brain.
This is part of DARPA’s cognitive computing program, called Systems of
Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE).
To do it, IBM used its cognitive computing chips, which the company unveiled last year.
They are designed to recreate the phenomena between spiking neurons and
synapses. More than 2 billion of these cores were divided into 77
brain-inspired regions, with gray matter and white matter connectivity,
according to IBM. The gray matter networking comes from modeling, and
the white matter networking comes from a detailed map of connections in
the macaque brain. The combined total 530 billion neurons and 100
trillion synapses ran 1,542 times slower than real time--actually quite
fast, in computing terms.
The ultimate goal is a computer that works like a brain, and can
analyze information in real time from multiple sources. Under SyNAPSE,
it would also be able to rewire itself dynamically in response to its
environment, just like real brains do. It would also have to be very
small and low-power, which in some ways will be even more challenging
than developing the connections. IBM presented its latest results at the
Supercomputing 2012 conference.
source: http://www.popsci.com/technology/article/2012-11/world%E2%80%99s-fastest-supercomputer-simulates-100-trillion-synapses-many-human-brain
No comments:
Post a Comment